

Культура - великий учитель!
Золотое сечение.

Биография Фибоначчи
Фибоначчи, его настоящие данные: Леона́рдо Пиза́нский (лат. Leonardus Pisanus, итал.
Leonardo Pisano), период жизни (около 1170 года - около 1250 года). Первый крупный математик
средневековой Европы. Наиболее известен под прозвищем Фибона́ччи.
Леонардо Пизанский никогда не называл себя Фибоначчи. Этот псевдоним был дан ему
позднее,предположительно Гийомом Либри (Guglielmo Libri Carucci dalla Sommaja) в 1838 году.
Слово Fibonacci — сокращение от двух слов «filius Bonacci», появившихся на обложке «Книги
абака». Они могли означать либо «сын Боначчо», либо, если интерпретировать слово Боначчи как
фамилию, «сын Боначчи». Согласно третьей версии, само слово Боначчи нужно понимать как прозвище, означавшее «удачливый». Сам он обычно подписывался Боначчи. Иногда он использовал также имя Леонардо Биголло — слово bigollo на тосканском наречии значило «странник», а также «бездельник».
Последовательность Фибоначчи. Числа Фибоначчи
Одним из наиболее значимых достижений в средневековой математики является введение арабских цифр вместо римских. Оно принадлежит одному из самых замечательных ученых двенадцатого столетия Леонардо Фибоначчи. Его именем было названо ещё одно сделанное им открытие – суммационная последовательность: 1,1,2,3,5,8,13,21,34,55,89,144,… Это – так называемые числа Фибоначчи.
Чи́сла Фибона́ччи — элементы числовой последовательности 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, … (последовательность A000045 в OEIS) в которой каждое последующее число равно сумме двух предыдущих чисел. Название возникло от имени Леонардо Фибоначчи. Иногда число 0 не рассматривается как член последовательности.
Эта закономерность в математике интересовала ещё одного ученого средневековья – Фому Аквинского. Движимый желанием «алгеброй гармонию измерить», учёный сделал вывод о прямой связи математики и красоты. Эстетические чувства, возникающие при созерцании гармоничных, пропорционально созданных природой объектов, Фома Аквинский объяснял тем же принципом суммационной последовательности.
Этот принцип поясняет, что начиная с 1,1, следующим числом будет сумма двух предыдущих чисел. Эта закономерность имеет большое значение. Это последовательность все медленнее и медленнее – асимптотически – приближается к некоему постоянному отношению. Однако отношение это является иррациональным, то есть имеет в дробной части бесконечную и непредсказуемую последовательность цифр. Точное его выражение невозможно. Разделив любой член последовательности Фибоначчи на член, предшествующий ему, мы получим величину, которая колеблется возле значения 1.61803398875... (иррациональное), которая будет то не достигать, то превосходить его всякий раз. Даже Вечности не хватит для того, чтобы точно определить это соотношение. Для краткости мы будем использовать его в виде 1.618.
Особенности чисел Фибоначчи:
1. каждое третье число Фибоначчи четно;
2. каждое четвертое кратно 3;
3. каждое пятнадцатое оканчивается нулем;
4. два соседних числа Фибоначчи взаимно просты.
Последовательность Фибоначчи обладает и другими весьма любопытными особенностями, не последняя из которых - почти постоянная взаимосвязь между числами.
Сумма любых двух соседних чисел равна следующему числу в последовательности. Например: 3 + 5 = 8; 5 + 8 = 13 и т.д.
Отношение любого числа последовательности к следующему приближается к 0,618 (после первых четырех чисел).
Например: 1: 1 = 1; 1: 2 = 0,5; 2: 3 = 0,67; 3: 5 = 0,6; 5: 8 = 0,625; 8: 13 = 0,615; 13: 21 = 0,619.
Обратите внимание, как значение соотношений колеблется вокруг величины 0,618, причем размах флуктуаций постепенно сужается; а также на величины: 1,00; 0,5; 0,67.
Отношение любого числа к предыдущему приблизительно равно 1,618 (величина обратная 0,618). Например: 13: 8 = 1,625; 21: 13 = 1,615; 34: 21 = 1,619.
Чем выше числа, тем более они приближаются к величине 0,618 и 1,618.
Отношение любого числа к следующему за ним через одно приближается к 0,382, а к предшествующему через одно - 2,618. Например: 13: 34 = 0,382; 34: 13 = 2,615.
Последовательность Фибоначчи содержит и другие любопытные соотношения, или коэффициент, но те, которые мы только что привели - самые важные и известные. Как мы уже подчеркивали выше, на самом деле Фибоначчи не является первооткрывателем своей последовательности. Дело в том, что коэффициент 1,618 или 0,618 был известен еще древнегреческим и древнеегипетским математикам, которые называли его "золотым коэффициентом" или "золотым сечением". Его следы мы находим в музыке, изобразительном искусстве, архитектуре и биологии. Греки использовали принцип "золотого сечения" при строительстве Парфенона, египтяне - Великой пирамиды в Гизе. Свойства "золотого коэффициента" были хорошо известны Пифагору, Платону и Леонардо да Винчи.
Средневековый математик Лука Пачиоли назвал это соотношение Божественной пропорцией. Кеплеpом суммационная последовательность названа "одним из сокровищ геометрии". В современной науке суммационная последовательность Фибоначчи имеет несколько названий, не менее поэтичных: Отношение вертящихся квадратов, Золотое среднее, Золотое сечение.
Понятие "Золотое сечение"
Золотое сечение (золотая пропорция, деление в крайнем и среднем отношении) — деление величины (например, длины отрезка) на две части таким образом, при котором отношение большей части к меньшей равно отношению всей величины к её большей части. Или, если использовать вычисленную величину золотого сечения, — это деление величины на две части — 62% и 38% (процентные значения округлены). Приблизительная величина золотого сечения равна 1,6180339887.
Число "фи" называется также золотым числом.
С незапамятных времен эта пропорция считается наивысшей из возможных пропорцией совершенства, гармонии, а иногда и божественности. Золотое отношение можно обнаружить во всем - произведений искусства до архитектуры и музыки. Примером этого являются собор Нотр-Дам в Париже, великие египетские пирамиды и даже музыкальные произведения Моцарта. Но золотое сечение проявляет себя и в природе. Наше тело, лицо, сердечный ритм и почерк – все подчинено этой пропорции, вплоть до клеточного уровня. Золотое сечение может быть обнаружено в каждом человеческом существе – не важно насколько он высок или низок – при разделении на уровне пупка. Даже биржевые курсы и алфавит иврита содержать золотое отношение Фибоначчи.
Связь чисел Фибоначчи и "Золотого сечения"
Природа не пользуется золотым сечением сразу. Она его получает путем последовательных итераций и для порождения золотого сечения пользуется другим рядом, - рядом Фибоначчи.
Золотое сечение или отношение – математическая пропорция, которая проявляется повсеместно в природе. Эта пропорция разделяет отрезок на две неравные части таким образом, что отношение всего отрезка к большей части равно отношению большей части к меньшей. Если придать всему данному отрезку численное значение 1, золотое сечение составляет 0,61803. Числа Фибоначчи могли бы остаться только математическим казусом, если бы не то обстоятельство, что все исследователи золотого деления в растительном и в животном мире, не говоря уже об искусстве, неизменно приходили к этому ряду как арифметическому выражению закона золотого сечения.
Последовательность Фибоначчм асимптотически (пpиближаясь все медленнее и медленнее) стpемится к некотоpому постоянному соотношению. Однако, это соотношение иppационально, то есть пpедставляет собой число с бесконечной, непредсказуемой последовательностью десятичных цифp в дpобной части. Его невозможно выразить точно.
Если какой-либо член последовательности Фибоначчи pазделить на пpедшествующий ему (напpимеp, 13:8), pезультатом будет величина, колеблющаяся около иppационального значения 1.61803398875... и чеpез pаз то пpевосходящая, то не достигающая его. Hо даже затpатив на это Вечность, невозможно узнать сотношение точно, до последней десятичной цифpы. Kpаткости pади, мы будем пpиводить его в виде 1.618. Особые названия этому соотношению начали давать еще до того, как Лука Пачиоли (сpедневековый математик) назвал его Божественной пpопоpцией. Cpеди его совpеменных названий есть такие, как Золотое сечение, Золотое сpеднее и oтношение веpтящихся квадpатов. Kеплеp назвал это соотношение одним из "сокpовищ геометpии". В алгебpе общепpинято его обозначение гpеческой буквой фи Ф=1.618
Числа Фибоначчи и Золотое сечение в геометрии
Связь чисел Фибоначчи и Золотое сечение очень широко используется в геометрии. Мы начнем наше путешествие по геометрическим свойствам золотого сечения с «золотого» прямоугольника, который имеет следующее геометрическое определение. Прямоугольник называется «золотым», если в нем отношение большей стороны к меньшей равно золотой пропорции.
Любой отрезок может быть разделен таким образом, что соотношение между его меньшей и большей частями будет равно отношению между большей частью и всем отрезком. Это отношение всегда равно 0.618.

